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Computational complexity of symbolic dynamics at the onset of chaos
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In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region
of complexity. It was suggested by Wolfram, on the basis of qualitative behavior of cellular automata, that the
computational basis for modeling this region is the universal Turing machine. In this paper, following a
suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a
computational model to describe the boundary of order and chaos. In particular we study the region of the first
accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of
language theory. We show that in relation to the “extended” Chomsky hierarchy, the relevant computational
model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal
case is modeled by the linear bounded automaton or the related context-sensitive languages.

PACS numbdss): 05.45+b

[. INTRODUCTION els of machines or automata are related to the languages they
recognize, which are in turn generated by their respective

The complex systems that we often observe, both in nagrammars. This hierarchy is known as the Chomsky hierar-
ture and otherwise, are characteristically poised in a delicatehy. The Turing machines form the top of this hierarchy.
balance between the dullness of order and the randomness of The dynamical systems we study are the rather well un-
disorder. In recent years a lot of effort has been expended iflerstood, iterated maps of the interval. We investigate the
obtaining quantitative measures which would provide suit-onset of chaos which is exhibited by the first accumulation of
able definitions for this complexity. period doubling for the case of the unimodal and bimodal

In a study of the qualitative behavior of cellular automata,families of maps. The symbolic dynamics and the kneading
Wolfram [1] noticed that there was a class of automatatheory for these cases are well knoj#6]. We demonstrate
which he called class 4, whose members displayed completpat the language generated by the kneading sequences in
dynamical behavior. In particular, they seemed to exhibithese two cases can be recognized by machines which lie
transients which were arbitrarily long-lived. Wolfram sug- lower down in the Chomsky hierarchy.
gested that this behavior was reminiscent of the undecidabil-
ity.which charapterized the halting problem for Turir)g Ma- || THE SYMBOLIC DYNAMICS OF MAPS OF THE
chines. He conjectured that class 4 automata then might have INTERVAL
a universal Turing machine embedded within them.

The model of the Turing machine has served, in the past, In this section we set up the notation used by Mackay and
to provide a deeper understanding of phenomena which hatresser[6] to describe the onset of chaos at the first accu-
been investigated through other means. The most notablaulation of period doubling.
among these is the development of the idea of algorithmic
information which is the computational counterpart of the
traditional Shannon entropy. These ideas have served to pro-
vide a quantitative basis for the qualitative notion of random- A unimodal map is, by definition, a continuous majof
ness. Conceived originally through the efforts of a number othe intervall =[0,1] into itself, which possesses a single
people, it has shed light on some deep issues related to tligrning pointc. Normally f is chosen so that it monotoni-
foundations of mathematics, mainly through the work ofcally increases in the interv@0,c) and decreases monotoni-
Chaitin[2]. cally in the interval €,1]. With every point inl we associate

In [3] we tried to show that cellular automata, with Turing a symbolL or R depending on whether it lies on the left or
machines embedded within them, may not always displayn the right ofc. c is identified with the symboC. In this
complex behavior. In our present work we try to demonstratevay the orbit of any point il under iteration by the map
that the model of the Turing machine may at times be tod can be associated with a sequefag is done convention-
powerful to describe the computational complexity at theally, an eventually periodic sequence of symbols will be de-
edge of order and chaos. Crutchfi¢#] has argued that in- scribed as a finite sequence by enclosing the periodic part in
stead of looking only at the Turing machine, it might be brackets with the symbols” at the end asin - - (- - -)*) of
wiser to look at the entire hierarchy of machines that comsymbols from the sef\=L,C,R. The kneading sequence,
putation theory provides us with. Classical computationwhich is defined to be the symbol sequence corresponding to
theory provides a beautiful framework in which mod- the orbit of the pointf(c), is of particular importance in the

symbolic dynamics. It has been shown in the pioneering
work of Milnor and Thurstorj 7] that the kneading sequence
*Electronic address: porus@theory.tifr.res.in controls the possible symbol sequences that can occur for a

A. The unimodal case
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given map and that it determines important ergodic proper{1,2,4,...,2"t. Each of these maps have a finite, stable at-
ties of the map, such as the topological entropy. tracting set and hence display ordered dynamics.

In order that we can define the symbol sequences of in- We also define another set of kneading sequences which
terest to us, we need mention here only a single detail fromvould be useful for later discussion,
symbolic dynamics. Symbolic sequences can be ordered in

such a way that they respect the ordering of the interyal K/:(X(n)mn)x(n)u(n)X(n)mn))oc n=0.
i.e., if X,y el have symbol sequenceéx) ands(y), respec- n '
tively, then . . .
The sequencK;, represents a map which contains an orbit of
x=<y if s(x)=<s(y). period 3x 2". These maps have positive topological entropy
and can, in this sense, be considered as displaying chaotic
This ordering is defined as follows. dynamical behavior.
First we define an ordering on the symbolslasC<R. The sequenc&..=K_, is the kneading sequence of the

Now, if A=Xa... andB=Xb... are two sequences, for map at the onset of chaos. The set of periods of the periodic
which X is the common prefix sequence anab  points of this map is given by1,2.4,....2, ...}. The to-

e{L.C,R}, a#b, then pological entropy in this case is zero.
i b and . ber 6’ For the details of these results, we refer the reader to the
A<B if a<b andX contains an even number d?’s literature[5,6].

or a>b and X contains an odd number @’s,
A>B otherwise B. The bimodal case
We now describe the accumulation of period doubling in
It is well known that families of unimodal magke the  bimodal maps through their symbolic dynamics. Once again
well-known logistic family exhibit the route to chaos we refer the interested reader[®) for the details.
through period-doubling transitions. The renormalization A bimodal map of the interval is a mapf from | into
group theory pioneered by Feigenba(®n provides a beau- itself with two turning pointsc andk. In what follows we
tiful description of this phenomenon. For our purposes itconsider the case of thé —+ maps, i.e., maps which are
suffices to describe the kneading sequences that arisfonotonic increasing on (€), and (,1), monotonic de-
through successive applications of the renormalization groupreasing on ¢,k). Each point inl is now associated with a
transformation. The limit sequence can then be thought of asymbol from the se{L,R,B} depending on whether it be-
the symbolic description of the onset of chaos, obtaineqongs to the interval (@), (c,k), or (k,1), respectively. The
through an accumulation of period-doubling transformationspoints ¢ andk are assigned the symbaB K, respectively.
The kneading sequences are most conveniently described e symbol sequence corresponding to the orbit of a point
the so calledt-operation, originally discovered by Derrida, consists of a string of symbols from the set
Pomeau, and Gervoi@]. Given a wordX on the symbols 5 ={| ,C,R,K,B}. In this case, the kneading data of a map
{L.C,R}, RxX is obtained by applying the following trans- correspond to a pair of kneading sequences, which corre-
formations simultaneously on every symbolXf spond to the symbol sequences of the pair of points
(f(c),f(k)). As mentioned before, the kneading data
uniquely determine some important properties of the map.
The definition of the ordering on symbol sequences for
the unimodal case from the preceding section can be retained
verbatim for the bimodal case, if we define the ordering on
C—RC. the elementary symbols as<C<R<K<B. The parity of

To help us motivate the bimodal case that is treated in th%;e tcr:]c(;mnnl]omnbgrreélﬂé,:fithﬁ S.Iymfolls s(;zn;gts O":’hset"fl a(i?ttehr;gned

next sub-section, however, we use a different algorithm, due

) corresponds to the symbol for that portion of the intedval
to Ma}ckay and 1;ir)es§e_{|6], for generating these seguences.on whichf is monotonic decreasing. Thus defined, the order-
Consider wordX'", i=1,2, ... defined as follows:

ing on symbol sequences respects the ordering on the inter-
X0 = &5 val as before.

' We now give the description of the onset of chaos, corre-
sponding to the first accumulation of period doubling for
bimodal maps. We define operationsand r on pairs
(X,Y) of finite (possibly empty sequences ofL,R,B} by

L—RR

R—RL,

X+ = x My (M),

where theU™ andU ™ are symbols chosen frofi,R} so
that (X,Y) I=(X,YVXUY), (X,Y) r=(XU YVXY),

XMym<xMc<xmy ™, @
The wordsK = (XWC)*,n=0 are, then, the kneading se- Where U,U _are symbols chosen fror{R,B} so that
quences of maps, having a superstable periodic orbit of peXU<XK<XU andV,V are symbols chosen frofi.,R} so
riod 2". Moreover, the set of lengths of the periodic orbits ofthatYV <YC<YV.

the map with the kneading sequent€, is given by Given a finite sequenceof I's andr’s, we define
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while for n=2,

S;= U {o(((XUYVXUYVXUYV))?,
Is|=n-2

(YVXUYVXUYVXU))”)
Uw((XU YV XUYVXUYV )y,
(YVXUYVXU YV XU)9*)

Y w U o(((XU YVXUYVXU YV))~,
(YV XU YVXUYVXU))™)
Uw((XU YVXUYVXUY V),
(YVXUYVXUYVXU))™)},

where ABC. ..)s=(ABLCs...).

The regionsk ; andS; are shown in Fig. (ii).

With these definitions, following6], we define subsets of
(i) G, which will serve as the regions of order and chaos.

R,.=UR = Ru),
FIG. 1. (i) The spaceG of pairs (P,Q) of sequences on UR h=U(G\Ry)

{L,C,R,K,B}. (ii) The wedgew(Py,Qq). (iii) The regionsG\R,; " "
andS; . Taken from Mackey and Tressks]. S.=U,S,,
(Xs,Yo)=(J,D)s ©) D=G\(R .US,).
and writeUg,U ¢, Vs,V ¢ for the U,U ,V,V corresponding to Theorem 1 of6] tells us that the set of periods of a map
Xs:Ys. contained in the regiom ., is given by{1,2,4,...,2"} for

Pairs (P,Q) of sequencegpossibly infinitg over the sym-  somen. Moreover, all such maps are contained within it.
bol set can be put into a one-to-one correspondence withrpys maps within this region exhibit ordered dynantiasd
pOintS in the unit Squarbee F|g m)], Wh|Ch we denote by have Zero topologica' entroby
G. For (Po,Qo) € G, we define avedge[see Fig. lii)] On the other hand, a map contained in the regiorhas

_ . at least one periodic orbit with a period, which is not a power
w(Po,Q0)={(P,Q) e G:P=P,,Q<Qy}. of 2. Moreover, all such maps belong to this region and have

Then define positive topological entropy. Hence, we considr as the
region of chaos.
Ryi= U o((XUYC)"(YVXK)?)  for n=0, The set of periods of a map in the boundarys given by
[sl=n {1,2,4,...,2", ...}. Again, all maps with such a structure

of periodic orbits belong t@. We will considerD as the
“boundary” of order and chaos. Whether it is a boundary, in
a precise topological sense, of the regidhs and S, is a
égng-standing conjecture.

where||s|| is the length ofs.

All maps on the boundaries of the wedges definRg
have a singly superstable, period™2 orbit passing through
C or K. For example, the kneading sequences in the cas

n=0,1 are as follows:
IIl. THE “EXTENDED” CHOMSKY HIERARCHY

$=0: XUYC=RC, Y VXK=RK, The classical theory of automata and formal languages

—1- _ _ has its roots, on the one hand, in the work of Turing, Church,
s=l XUSYSC=RLRG YV XK=LRLK, and others who developed the foundations of the theory of
s=r: X.U.Y.C=BRBC, Y.V.X.K=RBRK computation and, on the other, in the work of formal lin-

. s¥s's SY S/rs

guists, notably Chomsky. In the present section we present a

As can be seen from the symbol sequences, these two periobrief outline of this very large body of work, with an empha-
doubling cascades are inside each of the hump regions, i.&sis on that part which will be relevant for our purpose. For

around the point€ andK. details the reader is referred to the classic book by Hopcroft
We also define region§,,n=1,23. .., such thats, and Ullman[10]. .

contains maps which have certain periok 2"~ ! orbits. The entities that automata theory deals with are formal

The definitions of thes&, is cumbersome. We reproduce it descriptions of devices which can perform “mechanical”

here for completeness. tasks of varying degrees of difficulty. These devices usually

have an input tape containing symbols from an alphabet, a
S;1=w(RLR”,(LRR*)Uw((BRR",(RBR") memory unit, and an auxiliary tape which is used to perform
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Phi Struct
Turing Machines
Grammars
" Context - Sensitive Linear Bounded
Grammars Automata
Indexed G Nested-Stack
One-Way
Stack Grammars? Non-deterministi
Stack Automata
Context - Free PushdownAutomata Context-Free
Grammars . Languages
t Regular Languages

FIG. 2. The “extended” Chomsky hierarchy. The single-headed arrows denote strict inclusion. The double-headed arrows denote an
egivalence. The central column consists of the hierarchy of automata, the left column of the hierarchy of generative grammars, and the right
column of the hierarchy of formal languages. In the conventional Chomsky hierarchy, the stack and the indexed languages do not occur.

Recursively
Enumerable
Languages

Context - Sensitive
Languages
Indexed Languages

One-Way
Non-deterministic
Stack Languages

OL systems

Regular Finite Aut:

storage and output. The dynamics of the automaton is das a beautiful fact of computation theory that the languages
scribed by defining the actigs) to be performed, depending generated by the different grammars are also “recognized”
on the symbol being currently read on the input tape, thesy the various classes of automata shown in Fig. 2. This
present memory state, and the current symbol on the storaggerarchy of languages, grammars, and machines goes under
tape. These actions might entail a change of the memonhe name of the Chomsky hierarchiConventionally the
state, alteration of the current symbol on the storage tap&shomsky hierarchy does not contain the indexed and the
and motion along the input tape in either direction. The Tur-tacked languages and the automata that recognize them. We
ing machine is probably the best known example of an augg this the “extended” Chomsky hierarchy.

tomaton. The thesis of Church and Turing states that it is A very natural problem that arises in computation theory

equivalent o any other system that can perform a_tasl_< th% the determination of the class in which a given language
can be defmed algorithmically. The central column_ in Fig. 2 elongs. For this purpose, the theory provides a powerful set
ﬂ‘;&’;’fﬂg?ﬁi%ﬁsiﬁhgriuotr?lrgjtt:ti?:;fsgy\/; hierarchy ®f results which are called intercalation theorems or some-
Formal languages are sets, containing finite stricgfied ;[;mnes pumpmt? Ilemmas. Thes'e a:re nlecess_?gy condlflons If'or a
anguage to belong to a particular class. The usual applica-

wordsg of symbols from somdfinite) alphabet. The most P ing | . lud i |
common examples of formal languages are the programminfi2" ©f @ pumping lemma is to exclude a given language
Qm a certain class. Most commonly, the form of a pumping

languages that are used today. These are contained in t g - )
class of formal languages called the context-free language!$mma is as follows: Given any word belonging to a lan-
One way of describing formal languages is through theduage(in a certain class it is possible to find a subwofs)
grammars that generate them. A grammar contains not onl9f this word, of length not greater than (an integer that
the symbols which form the words in the language that itdepends only on the language and not the weth that all
generategthese are called terminal symbpldut also an the words obtained by “pumping(i.e., adding another copy
auxiliary set of symbols, called the nonterminal symbols.of the subword at its position in the given wottie subword
The “productions” of the grammar form the rules by which finitely often would all belong to the language. For example,
a given string of terminals and nonterminals can generatéhe pumping lemma for the class of regular languages which
another string of terminals and nonterminals. A special nonlie at the bottom of the Chomsky hierarchy is as follows.
terminal (usually denoted byS) is designated the “start” Pumping lemma for regular language&iven a regular
symbol. Any string formed from the terminal symbols only, language #, there exists an integer (depending only on
which can be obtained from the “start” symbol, by applying #) such that for any wordk=uvw in  with |x||=n,

the productions successively, is a valid word in the language|uv|<n, v nonempty, all the words;=uv'w also belong to
The columns on the left and right in Fig. 2 show a hierarchy.%.

of the classes of languages and their generative grammars. It It might be useful to note that in the case when the word
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represents a periodic orbit, the new words obtained by pump- P(i)=||&ll=]1&l +ai+bi(i—1)/2. (4)
ing a subword would correspond to generating new periodic

orbits which would generically be unstable. In the next SECNow observe that for a word in .7, | IN[|=2m+2 for
tion we use the pumping lemmas for the one-way, nondeteré

o _ omem=0. Since eacl; is in .Z,, we have
ministic stacked languages and the indexed languages.

P(i)=2"+2 (5)

IV. THE RESULTS AND PROOFS for everyi=0, for someme N. That this is impossible is
most easily seen as follows.

In this section we present the main results of this paper P’(x)=P(x)—2 is a polynomial taking integer values on
and their proofs. We first define formal languages correthe set of integers. Hence the $&' (n):ne N} has an infi-
sponding to the onset of chaos in the unimodal and bimodatite number of prime divisoréhis is rather easy to proye
cases and then obtain the classes in the Chomsky hierarciBut from (5) P’ (i) is contained if2":ne N}. This leads to
where these languages occur. The key ingredient in each contradiction and completes the proof.
proof is a relevant pumping lemma. As the statements of (ii) The simplest proof of the fact tha¥,. in an indexed
these lemmas are rather involved, we will use the lemma antginguage is probably obtained by observing thds, is a

refer the reader to the literature for its precise statement. DOL language(see[10], p. 390ff, for the definition and
hence is also an indexed language. We will, however, explic-

itly define the indexed grammar which generatés .
Consider the indexed grammar defined as follows: The
A. The unimodal case nonterminal symbols argS, T,X,U,U}, with S as the start
In the notation of Sec. Il A, we introduce a sequence Ofsymbol. The terminal symbols afé.R,C,(,)"}. The index

languages. 7,={K,:0=<r=<n}. The words in these lan- productions aréherez is the empty string
guages are formed from the alphabet

A'={L,C,R}U{(,)*}. Moreover for eacn, .7, is finite Xf—XUX,
and is contained inZ,, ;. Thus eachZ, is a regular lan-
guage. The limit language”., can be thought of as a sym- Uf_,U_1

bolic description of the onset of chaos corresponding to the
sequence of period doublings of unimodal maps. Our con-

cern here is to describe the place that this language has in the uf—u,
“extended” Chomsky hierarchy. This is summarized by the
following theorem. Xg—e,
Theorem 4.1 Ug—L,
(i) .7, is not a one-way, nondeterministic stack language. —
(i) 7, is an indexed languag#, in fact, belongs to the Ug—R.
more restricted class DQL
Proof. The productions are
(i) We use the pumping lemma for one-way, nondeter-
ministic stack languages, which can be found 1d]. Sup- S—(C)~,

pose. 7, is a one-way, nondeterministic stacked language.
Consider the integét in theorem 1(henceforth referred to as

OG)) of [11]. Let &, be a word in 7, of length greater than S—=(Tg0O)",
k. The pumping lemma then guarantees the existence of a
string of words¢;,i=1,23... obtained by intercalating T-TH,

strings within &, as described in OG1. If£|| denotes the

length of the word¢, we have from OG1, for ali>0, —
T—XUX.

The derivation of the words inZ, using the indexed
&= l&-dl=lpil +lloill+] 7]l —lloi-1l=a+ib, (3)  grammar proceeds as follows. As is conventionksB
means thaB is derived fromA using a single productiofor

*

where a is the sum of the lengths of all the;’s, v;’s, index productioln, while A=B means that there exist
dj's, x;'s, ¥;'s, andb is the sum of al|3;’s that appear in the C,,C,, ... ,C, such thah=C,;=C,=---=C,=B. Here
definitions ofp;,o;, and7; in OG1. A,B,C; are words formed from the terminal and nonterminal

(3) is easily solved recursively, to give symbols
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(b) Concatenate the words corresponding to each wedge
in the same order to form the word correspondindrta

0
/ \ In exactly the same fashion we can obtain the words
r

which describeS,,. Let w(R,) and w(S,) be the words

l
which describeR,, andS,,, respectively.

/\ /\ Remark (2) The length of the word representing a wedge

i rt I g in the definition ofR, is of length 2*2+7. This follows
/ \ /\ /\ /\ from the fact that ifs has lengthn, then the lengths oK
u o i v i . and Y add up to 271—2. Similarly the length of a word
. . ‘ . : that describes a wedge 8), is 3X2"+ 7. In particular, note
' ' that the number of symbols that occurs between two con-
secutive occurrences of the symbdl’in the definitions of

rrl Ur r

FIG. 3. The tree7. R, andS, is a(nonconstantfunction of n.
We define a sequence of languag@s,i=1,2... on the
alphabet
S = (0O~ =2 U {( ) o ()7
S = (Tg" = (XgUgXgh” = (RO)" as follows:
U i . .
o Ti={w(R)):j=1,2...i}.
(TfgO)* = (XfgUfgXfgC)™ _ o .
I This language can be thought of as describing the region
U}::I_Ri‘
U* As an example, we construct the language.
U Xs=@, Yu=T, Uyz=R, U z=B, Vy4=R, V z=L,
(XgUngUngl_..gng)wﬁ(RLRQw X|:®, Y|:LR, U|:R, U |:B, V|:L, V|:R,
U X,=BR, Y,=@, U,=B, U,=R, V,=R, V=L,
w(R;)=((RLRO”:(LRLK)*){(BRBO”:(RBRK™),
Tff---fgC)* --- ) . . . .
( \fing L1={{(RLRO”:(LRLK)*}(BRBO”:(RBRK*)}.

n times
The limit language?,, can be thought of as describing
the “boundary” D of order and chaos. The following theo-
rem characterizes?,, with respect to the Chomsky hierar-
B. The bimodal case chy.

We define the language which would describe the first
accumulation of period doubling for the bimodal maps. In
the terminology of Sec. Il B, we describe each wedge (i) .%, is not an indexed language.

o(P,Q) by the word(P:Q). The regionR, is obtained as a (i) .Z, is a context-sensitive languafjg in fact, belongs
union of wedges, each of which corresponds to a uniquéo the more restricted class DSPAGE(.
finite strings of I's andr’s of lengthn. Proof.

To describe the word corresponding Ry we first intro- (i) The pumping lemma for indexed languages is given in
duce the lexicographical ordering on stringisinduced by [12]. Our proof closely follows theorem 5®&enceforth re-
the orderind <r on the symbols 0§, i.e.,ifs;=xa... and ferred to as HA5.8of [12]. We urge the reader to refer to
s,=xb... are two strings o#l,r}, with a common prefix [12] for a description of the notation that we use in this
sequencex and a,be{l,r},a#b, thens;<s, if a<b, or  proof.
elses;>s,. Note that this ordering is different from the  Suppose%., is an indexed language. Choosé”‘as a
ordering on words we had defined in Sec. Il A. special symbol off,’. With every word of an indexed lan-

Remark (1) The wordss can be generated as the nodes ofguage, we can associate a derivation ts=[12]). A node,

a binary tree. The lexicographical ordering is then the conp, of a derivation treey, is said to be & node, if there exist
ventional ordering of nodes from left to right of a binary tree at least two distinct subtrees under it, each of which contains

Theorem 4.2

(see Fig. 3 We will refer to this tree ag. at least one node with the labe{.” A pair of nodesp,,p, of
With this we now define the word correspondingRpas vy are said to be CF-like ifa) p, is a descendent g, (b)
follows: p; and p, have the same label§;) there exists &P node

(a) Arrange the wedges occurring in the definition of p, such thap is a descendent gf; andp, is a descendent of
R,, in increasing lexicographical order of the strirg¢hat  p. If y contains no CF like pair of nodes, it is said to be
each wedge corresponds to. non-CF-like.
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We now show that ify is a word in.%,, of large enough easily possible usingemark (2) Since the first wedgén
length, then parts of it can be intercalated in such a way thawhat follows we will use the terms “wedge” and “the word
the resulting words would not belong.té,, . Choosey to be  representing the wedge” interchangeably when there is no
any word in which the number of occurrences of the symbodanger of confusionin any word of .7, has length
“(”is more thank’, wherek’ is an integer which depends 2"*2+7 for somen, we can use two auxiliary tapes
only on.%,, (and is defined in HA53 Say v is the deriva-  t,;,ty; to evaluaten.
tion tree of. We consider two cases. Step (2) Determine the possible strings on {l,r} of

Case(a. y is non-CF-like. In this case, following the lengthn, in lexicographical order.
proof of HA5.3 we can establish that there is a decomposi- We now want to obtain the nodes of the trég [see
tion y=a- B- §- 7- v such that eithew or v has at least three remark (1) at depthn. These nodes will be written an in
P nodes. Then by intercalating parts pfwe obtain a se- the lexicographical order from left to right and will be sepa-
quence of tree®,,, n=1,23... each of which hagr and rated by commas. To achieve this we need two auxiliary
v as its(first and last, respectivelycomponents. Moreover tapest,,,t,,. For every 1 encountered dn, the taped,,
the wordg(6,), of which 6,, is a derivation tree, belongs to andt,, can be used alternately to generate the nodes,ait
. and ||g(0,)11<lg(6,+1)]. This means that there exist successive depths by copying and prefixing. This is contin-
words of increasing length in%,, such that each of them ued until the first blank is encountered tin when the pro-
contains afixed subword of the form(- - -{ (because either cess stops and the contents of the last auxiliary tape written
a or v has at least threP node$. This contradictRemark on are copied td,. As the formal description of the entire
(2). procedure is cumbersome, we leave it to the reader to check

Case(b) y has a CF-like pair of nodes. In this case theit. It is easy to see that the limited size of the tapes available,
proof of lemma 2.1 of[12] guarantees a decomposition in fact, suffices for this purpose. L
y=a-B- 5 such thatB contains aP node. Moreover for Steps (3}(8). DetermineXg,Y,Ug,Ug, Vg,V for ans

eachn=1,23 ..., there exists a sequence of trees ont,.
For ans that has been written on tage, we wish to
y,=a-B-B--B -0 determine the corresponding,Y,U,U,V,V. These will be
m stored on tapes; to tg, respectively. As the process is re-
cursive we can use auxiliary tapeg ,t, i=3,...,8 for

) ) each main storage tape. While the determinatioXX of re-
such that eacly(y,) € 2. and|lg(yn)l<[g(vn+1)l. This  quires mere copying from one tape to another, the determi-
implies that for everyn=1, g(,) contains a subword of the 4401 ofu, U, V,V will require the determination of the par-
form (---(---)" (note that by- - -{- - - we mean dixedsub- ity of the number ofR’s in X,Y.
word of that forn). Since they,’s belong to.%., we have a Step (9) Determine the word corresponding ®, in
contradiction withremark (2) B

(i) We prove that7, is a context-sensitive language by  Fqor eachs the wedges that occur in the definition Rf,

showing that it in fact belongs to the complexity (:Iassare easily obtained by copying theY,U,U,V,V in the rel-

DSPACE(). The proof that the class of context-sensitive .- .+ o der tde. Control then returns tsteps 8) where
languages is equivalent to the complexity class NSPAC YU UV Viorresponding to the negtapre E;Sk;;i?wed and
(n) [which contains DSPACH() ], can be found irf10]. so forth, |

To show that a language is DSPAGE( we need to show After this the word intg is compared symbol-by-symbol

that the words in the language can be recognized by an off- . : L : . )
line, multitape Turing machine such that the size of everygg?etg‘?‘:gteoi't l:];tlt'ssitnhg iir:f?ng;igtaecmne halts in a final
tape (including the read-only tapds limited to the size of '

. ; ; We observe that iffe.%,,, then each step in the process
the input word(buffered on either side by end-marker sym- . .
bolg). We will informally describe the steps in the algorithm described above could be carried out on the bounded set of

required to recognize the input string. It will be clear from taepéijs :ZZE:P\:Ve is ti\éa”eitgeb: guse::tilijrlgrgsatlgyao;ﬂ;:sg S\f\?epsa?e
our description that each subroutine in this algorithm can bg ) P : 9 Pe,
implemented on a bounded tager sometimes a pair of guar_anteed thatp_eé ﬁ*’” and the machme wollld halt in a
tapes of our machine. The number of subroutines involvednonf'nal state, rejecting the word. This completes the proof.

in the description will thus determine the number of tapes of
the machine. We buffer each tape of the machine with end-
marker symbols. If for a given input string the head on any
output tape reaches an end marker, the machine halts in a
nonfinal state and thus fails to accept the string. It will be Let us first consider the description of the onset of chaos

V. APPROACHING THE ONSET OF CHAOS

clear that for a string inz,, this will never happen. in the unimodal case. It might seem at first sight that the
In what follows we denote the tapes of the Turing ma-description of this set by means of the languagg as being
chine byt;,i=0, ... N. tg is the input tape which is read- ratherad hoc In fact, instead of choosing to approach the
only. Auxiliary tapes necessary to perform computations aaccumulation point through a sequence of superstable bifur-
step (1)will be denoted a$,; ,ty;, etc. cations, we might as well have chosen any of the other se-
Step (1) Determinen for the given input wordy. gquences available. However, it is easy to see that the knead-

We wish to placen 1’s ont; to determine the depth of the ing sequences within a periodic window are very simply
binary tree[seeremark (1) where s could occur. This is related to each other. We could in fact have included every
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kneading sequence less thxn to form a new language finite length(see[13]). Thus, we would have to have to find
% . . This new language would be described simply as appropriate representations for such sequences so as to be
able to deal with this problem within the context of classical
Co=A5U A AL, computation theory. Alternatively, we speculate that a de-
- - o scription of computation over the field of reals, when suffi-
where .Z;; (.7;) denotes the language containing thecjently elaborate so as to provide an analog of the Chomsky
kneading sequences to the I@sp. right of the superstable hjerarchy, might throw light upon these issues. The recent
sequences in each periodic window. A proof almost identicaljevelopments in this direction due to Blum, Shub, and Smale
to the one given for7.,, however, shows that bottv, and [14] might provide the seeds of such a theory.
7. (and hencez,) are indexed languages. The drawbacks mentioned above also apply to our discus-
A more pertinent question is what happens if we are tosion of the bimodal maps. We could, as in the unimodal case,
approach the onset of chaos from the chaotic side. This queshoose to approach the edge from the chaotic side. In the
tion is rather tricky. For the sake of discussion let us fix thenotation of Secs. [IB and VB, the language
family of maps to be the logistic family, described by the %, ={w(S,):n=1,23 ...} can be considered as describing
equationf(x) =ux(1—x). It will be clear that everything the regionD, thought of as the boundary of the regigp.
would go through for a much larger class of maps as wellThe proof given in Sec. IV B goes through almost unaltered
We could approach the accumulation pqint from the right  even for this case. Thug?”, is a context-sensitive language.
through a sequence of band-merging points. We begin with
the region of well-developed chaos at=4. The kneading
sequence at this point iK7=R(L)”. The band-merging
points are then obtained through successive applications of

the * operator, mentioned in Sec. Il A, as follows: V1. ON COMPLEX DESCRIPTIONS

In conclusion we would like to place our results in per-
spective. What paradigm do these results suggest for a defi-
nition of complexity? In order to address this question we
must first inquire into the process of description. The scien-
tific description of phenomena normally involves two as-
pects. The first is the specification of theodel classThe
second aspect involves the description of the phenomenon at
hand, with respect to this model class. Let us call this pro-
cess,interpretation For a description to be “useful” we
must ensure that both the model class and the interpretation
. o " have been specified in finite terms. Given this rather simplis-
Now consider the language/,={Kn:n=1.2,...}. We i nictyre of the modeling process, we now ask how com-
could think of th|§ If_:mguage as ano.ther description of theplexity arises or, more specifically, why are some phenom-
edge of chaos, this time from the region greater than I 3 more complex than others? Consider a phenomenon
fact the definition of thex operator immediately confirms \yhich resists finite interpretation with respect to a certain
that this is a DOL language and hence is also an indexegqqe| class. In order to describe it, we would then have to
language(see[10]). Note that we could have discussed the congiryct a “larger” model class. This could be regarded as
languagesZ,, and.Z,, using thex operation as wel(see, signalling complexity.
for example[5],). _ To illustrate this in the context of our results, consider the

We could now ask the same question that we asked besasses of automata, or equivalently, the classes of grammars
fore. What about other descriptions of the onset of chaog, the Chomsky hierarchy as representing model classes. Let
from the chaotic part of the spectrum? We do not at preserthe behavior of mapgunimodal or bimodal represent the
have any good answer to this question. As a preliminangntire class of phenomena to be described. The symbolic
observation we might note that we could have chosen tQynamics, giving rise to a language, and the explicit con-
approach the onset of chaos through the kneading sequencgsction of a grammaicorresponding to a given model
qu described in Sec. Il A and could have described yet anc|a33 generating that |anguage, at each value in the param-
other language7,,={K/:n=1,23...}. Of course this lan- eter space, can serve as an interpretation for the phenom-
guage is also an indexed language. enon. Together these constitute a description of the behavior

However, there is in fact a crucial difference between theof the map in question. Now, at the onset of chaos we ob-
language #., and the languages?., or .., , which, though serve that we are forced to change our model classhe
obvious, might be well worth pointing out: each word in unimodal case, for example, from the regular grammars to
% describes a stable periodic point, whereas thatin  the indexed grammarsin fact, in our case we have proved
describes an unstable periodic point. In the chaotic regiméhat no finite interpretation can be obtained of the onset of
the attracting sets would be described by aperiodic symbathaos in terms of the older model class. This describes the
seguences which are infinitely long. Unfortunately, classicatomplexity at the onset of chaos.
computation theory does not consider within its domain lan- The idea that complexity and emergence must necessarily
guages whose words might be infinitely long. In fact thebe defined with respect to models has been considered before
behavior of classical computational devices on words of in{see[15,16 and references thergirFinally we would like to
finite length is very different from their behavior on words of point out that, unlike conventional statistical mechanics,

Ky=RxKY,

Kj=RxRxKY,

K!=(R*)"KY,
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