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In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region
of complexity. It was suggested by Wolfram, on the basis of qualitative behavior of cellular automata, that the
computational basis for modeling this region is the universal Turing machine. In this paper, following a
suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a
computational model to describe the boundary of order and chaos. In particular we study the region of the first
accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of
language theory. We show that in relation to the ‘‘extended’’ Chomsky hierarchy, the relevant computational
model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal
case is modeled by the linear bounded automaton or the related context-sensitive languages.

PACS number~s!: 05.45.1b

I. INTRODUCTION

The complex systems that we often observe, both in na-
ture and otherwise, are characteristically poised in a delicate
balance between the dullness of order and the randomness of
disorder. In recent years a lot of effort has been expended in
obtaining quantitative measures which would provide suit-
able definitions for this complexity.

In a study of the qualitative behavior of cellular automata,
Wolfram @1# noticed that there was a class of automata,
which he called class 4, whose members displayed complex
dynamical behavior. In particular, they seemed to exhibit
transients which were arbitrarily long-lived. Wolfram sug-
gested that this behavior was reminiscent of the undecidabil-
ity which characterized the halting problem for Turing ma-
chines. He conjectured that class 4 automata then might have
a universal Turing machine embedded within them.

The model of the Turing machine has served, in the past,
to provide a deeper understanding of phenomena which had
been investigated through other means. The most notable
among these is the development of the idea of algorithmic
information which is the computational counterpart of the
traditional Shannon entropy. These ideas have served to pro-
vide a quantitative basis for the qualitative notion of random-
ness. Conceived originally through the efforts of a number of
people, it has shed light on some deep issues related to the
foundations of mathematics, mainly through the work of
Chaitin @2#.

In @3# we tried to show that cellular automata, with Turing
machines embedded within them, may not always display
complex behavior. In our present work we try to demonstrate
that the model of the Turing machine may at times be too
powerful to describe the computational complexity at the
edge of order and chaos. Crutchfield@4# has argued that in-
stead of looking only at the Turing machine, it might be
wiser to look at the entire hierarchy of machines that com-
putation theory provides us with. Classical computation
theory provides a beautiful framework in which mod-

els of machines or automata are related to the languages they
recognize, which are in turn generated by their respective
grammars. This hierarchy is known as the Chomsky hierar-
chy. The Turing machines form the top of this hierarchy.

The dynamical systems we study are the rather well un-
derstood, iterated maps of the interval. We investigate the
onset of chaos which is exhibited by the first accumulation of
period doubling for the case of the unimodal and bimodal
families of maps. The symbolic dynamics and the kneading
theory for these cases are well known@5,6#. We demonstrate
that the language generated by the kneading sequences in
these two cases can be recognized by machines which lie
lower down in the Chomsky hierarchy.

II. THE SYMBOLIC DYNAMICS OF MAPS OF THE
INTERVAL

In this section we set up the notation used by Mackay and
Tresser@6# to describe the onset of chaos at the first accu-
mulation of period doubling.

A. The unimodal case

A unimodal map is, by definition, a continuous mapf of
the interval I5@0,1# into itself, which possesses a single
turning pointc. Normally f is chosen so that it monotoni-
cally increases in the interval@0,c) and decreases monotoni-
cally in the interval (c,1#. With every point inI we associate
a symbolL or R depending on whether it lies on the left or
on the right ofc. c is identified with the symbolC. In this
way the orbit of any point inI under iteration by the map
f can be associated with a sequence~as is done convention-
ally, an eventually periodic sequence of symbols will be de-
scribed as a finite sequence by enclosing the periodic part in
brackets with the symbol ‘‘̀ ’’ at the end as in•••(•••)`) of
symbols from the setL5L,C,R. The kneading sequence,
which is defined to be the symbol sequence corresponding to
the orbit of the pointf (c), is of particular importance in the
symbolic dynamics. It has been shown in the pioneering
work of Milnor and Thurston@7# that the kneading sequence
controls the possible symbol sequences that can occur for a*Electronic address: porus@theory.tifr.res.in
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given map and that it determines important ergodic proper-
ties of the map, such as the topological entropy.

In order that we can define the symbol sequences of in-
terest to us, we need mention here only a single detail from
symbolic dynamics. Symbolic sequences can be ordered in
such a way that they respect the ordering of the intervalI ,
i.e., if x,yPI have symbol sequencess(x) ands(y), respec-
tively, then

x<y if s~x!<s~y!.

This ordering is defined as follows.
First we define an ordering on the symbols asL,C,R.

Now, if A5Xa . . . andB5Xb . . . are two sequences, for
which X is the common prefix sequence anda,b
P$L,C,R%, aÞb, then

A,B if a,b andX contains an even number ofR8s

or a.b and X contains an odd number ofR8s,

A.B otherwise

It is well known that families of unimodal maps~like the
well-known logistic family! exhibit the route to chaos
through period-doubling transitions. The renormalization
group theory pioneered by Feigenbaum@8# provides a beau-
tiful description of this phenomenon. For our purposes it
suffices to describe the kneading sequences that arise
through successive applications of the renormalization group
transformation. The limit sequence can then be thought of as
the symbolic description of the onset of chaos, obtained
through an accumulation of period-doubling transformations.
The kneading sequences are most conveniently described by
the so called*-operation, originally discovered by Derrida,
Pomeau, and Gervois@9#. Given a wordX on the symbols
$L,C,R%, R*X is obtained by applying the following trans-
formations simultaneously on every symbol ofX:

L→RR,

R→RL,

C→RC.

To help us motivate the bimodal case that is treated in the
next sub-section, however, we use a different algorithm, due
to Mackay and Tresser@6#, for generating these sequences.
Consider wordsX( i ), i51,2, . . . defined as follows:

X~0!5B,

X~n11!5X~n!Ū ~n!X~n!,

where theU (n) andŪ (n) are symbols chosen from$L,R% so
that

X~n!U ~n!,X~n!C,X~n!Ū ~n!.

The wordsKn5(X(n)C)`,n>0 are, then, the kneading se-
quences of maps, having a superstable periodic orbit of pe-
riod 2n. Moreover, the set of lengths of the periodic orbits of
the map with the kneading sequenceKn is given by

$1,2,4,. . . ,2n%. Each of these maps have a finite, stable at-
tracting set and hence display ordered dynamics.

We also define another set of kneading sequences which
would be useful for later discussion,

Kn85~X~n!Ū ~n!X~n!U ~n!X~n!Ū ~n!!`, n>0.

The sequenceKn8 represents a map which contains an orbit of
period 332n. These maps have positive topological entropy
and can, in this sense, be considered as displaying chaotic
dynamical behavior.

The sequenceK`5K 8̀ is the kneading sequence of the
map at the onset of chaos. The set of periods of the periodic
points of this map is given by$1,2,4,. . . ,2n, . . . %. The to-
pological entropy in this case is zero.

For the details of these results, we refer the reader to the
literature@5,6#.

B. The bimodal case

We now describe the accumulation of period doubling in
bimodal maps through their symbolic dynamics. Once again
we refer the interested reader to@6# for the details.

A bimodal map of the intervalI is a mapf from I into
itself with two turning points,c andk. In what follows we
consider the case of the121 maps, i.e., maps which are
monotonic increasing on (0,c) and (k,1), monotonic de-
creasing on (c,k). Each point inI is now associated with a
symbol from the set$L,R,B% depending on whether it be-
longs to the interval (0,c), (c,k), or (k,1), respectively. The
pointsc andk are assigned the symbolsC,K, respectively.
The symbol sequence corresponding to the orbit of a point
consists of a string of symbols from the set
S5$L,C,R,K,B%. In this case, the kneading data of a map
correspond to a pair of kneading sequences, which corre-
spond to the symbol sequences of the pair of points
„f (c), f (k)…. As mentioned before, the kneading data
uniquely determine some important properties of the map.

The definition of the ordering on symbol sequences for
the unimodal case from the preceding section can be retained
verbatim for the bimodal case, if we define the ordering on
the elementary symbols asL,C,R,K,B. The parity of
the common prefix of two symbol strings is still determined
by the number ofR’s in it. This is due to the fact thatR
corresponds to the symbol for that portion of the intervalI ,
on which f is monotonic decreasing. Thus defined, the order-
ing on symbol sequences respects the ordering on the inter-
val as before.

We now give the description of the onset of chaos, corre-
sponding to the first accumulation of period doubling for
bimodal maps. We define operationsl and r on pairs
(X,Y) of finite ~possibly empty! sequences of$L,R,B% by

~X,Y! l5~X,YV̄ XUY!, ~X,Y! r5~XŪ YVX,Y!,
~1!

where U,Ū are symbols chosen from$R,B% so that
XU,XK,XŪ andV,V̄ are symbols chosen from$L,R% so
thatYV̄ ,YC,YV.

Given a finite sequences of l ’s and r ’s, we define
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~Xs ,Ys!5~B,B !s ~2!

and writeUs ,Ū s ,Vs ,V̄ s for theU,Ū ,V,V̄ corresponding to
Xs ,Ys .

Pairs (P,Q) of sequences~possibly infinite! over the sym-
bol setS can be put into a one-to-one correspondence with
points in the unit square@see Fig. 1~i!#, which we denote by
G. For (P0 ,Q0)PG, we define awedge@see Fig. 1~ii !#

v~P0 ,Q0!5$~P,Q!PG:P>P0 ,Q<Q0%.

Then define

Rn5 ø
isi5n

v„~XsUsYsC!`,~YsVsXsK !`
… for n>0,

whereisi is the length ofs.
All maps on the boundaries of the wedges definingRn

have a singly superstable, period 2n11 orbit passing through
C or K. For example, the kneading sequences in the cases
n50,1 are as follows:

s5B: XsUsYsC5RC, YsVsXsK5RK,

s5 l : XsUsYsC5RLRC, YsVsXsK5LRLK,

s5r : XsUsYsC5BRBC, YsVsXsK5RBRK.

As can be seen from the symbol sequences, these two period-
doubling cascades are inside each of the hump regions, i.e.,
around the pointsC andK.

We also define regionsSn ,n51,2,3 . . . , such thatSn
contains maps which have certain period 332n21 orbits.
The definitions of theseSn is cumbersome. We reproduce it
here for completeness.

S15v„~RLR!`,~LRR!`
…øv„~BRR!`,~RBR!`

…

while for n>2,

Sn5 ø
isi5n22

$v~„~XUYV̄ XUYVXUYV̄!s…
`,

„~YV̄ XUYVXUYV̄XU!s…
`!

øv~„~XŪ YV̄ XUYV̄ XUYV̄ !s…
`,

„~YV̄ XUYV̄ XŪ YV̄ XU!s…
`!

ø v~„~XŪ YVXŪ YV̄ XŪ YV!s…
`,

„~YV̄ XŪ YVXŪ YVXŪ !s…
`!

øv~„~XŪ YVXUYVXŪYV!s…
`,

„~YVXŪ YVXUYVXŪ!s!
`
…%,

where (ABC . . . )s[(AsBsCs . . . ).
The regionsR̄ 1 andS1 are shown in Fig. 1~iii !.
With these definitions, following@6#, we define subsets of

G, which will serve as the regions of order and chaos.

R̄ `5ø
n
R̄ n5ø

n
~G\Rn!,

S`5ønSn ,

D5G\~R̄ `øS`!.

Theorem 1 of@6# tells us that the set of periods of a map
contained in the regionR̄ ` is given by $1,2,4,. . . ,2n% for
somen. Moreover, all such maps are contained within it.
Thus maps within this region exhibit ordered dynamics~and
have zero topological entropy!.

On the other hand, a map contained in the regionS` has
at least one periodic orbit with a period, which is not a power
of 2. Moreover, all such maps belong to this region and have
positive topological entropy. Hence, we considerS` as the
region of chaos.

The set of periods of a map in the boundaryD is given by
$1,2,4,. . . ,2n, . . . %. Again, all maps with such a structure
of periodic orbits belong toD. We will considerD as the
‘‘boundary’’ of order and chaos. Whether it is a boundary, in
a precise topological sense, of the regionsR̄ ` andS` is a
long-standing conjecture.

III. THE ‘‘EXTENDED’’ CHOMSKY HIERARCHY

The classical theory of automata and formal languages
has its roots, on the one hand, in the work of Turing, Church,
and others who developed the foundations of the theory of
computation and, on the other, in the work of formal lin-
guists, notably Chomsky. In the present section we present a
brief outline of this very large body of work, with an empha-
sis on that part which will be relevant for our purpose. For
details the reader is referred to the classic book by Hopcroft
and Ullman@10#.

The entities that automata theory deals with are formal
descriptions of devices which can perform ‘‘mechanical’’
tasks of varying degrees of difficulty. These devices usually
have an input tape containing symbols from an alphabet, a
memory unit, and an auxiliary tape which is used to perform

FIG. 1. ~i! The spaceG of pairs (P,Q) of sequences on
$L,C,R,K,B%. ~ii ! The wedgev(P0 ,Q0). ~iii ! The regionsG\R1

andS1 . Taken from Mackey and Tresser@6#.
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storage and output. The dynamics of the automaton is de-
scribed by defining the action~s! to be performed, depending
on the symbol being currently read on the input tape, the
present memory state, and the current symbol on the storage
tape. These actions might entail a change of the memory
state, alteration of the current symbol on the storage tape,
and motion along the input tape in either direction. The Tur-
ing machine is probably the best known example of an au-
tomaton. The thesis of Church and Turing states that it is
equivalent to any other system that can perform a task that
can be defined algorithmically. The central column in Fig. 2
shows various classes of automata that form a hierarchy of
machines in terms of their computational power.

Formal languages are sets, containing finite strings~called
words! of symbols from some~finite! alphabet. The most
common examples of formal languages are the programming
languages that are used today. These are contained in the
class of formal languages called the context-free languages.
One way of describing formal languages is through the
grammars that generate them. A grammar contains not only
the symbols which form the words in the language that it
generates~these are called terminal symbols!, but also an
auxiliary set of symbols, called the nonterminal symbols.
The ‘‘productions’’ of the grammar form the rules by which
a given string of terminals and nonterminals can generate
another string of terminals and nonterminals. A special non-
terminal ~usually denoted byS) is designated the ‘‘start’’
symbol. Any string formed from the terminal symbols only,
which can be obtained from the ‘‘start’’ symbol, by applying
the productions successively, is a valid word in the language.
The columns on the left and right in Fig. 2 show a hierarchy
of the classes of languages and their generative grammars. It

is a beautiful fact of computation theory that the languages
generated by the different grammars are also ‘‘recognized’’
by the various classes of automata shown in Fig. 2. This
hierarchy of languages, grammars, and machines goes under
the name of the Chomsky hierarchy.~Conventionally the
Chomsky hierarchy does not contain the indexed and the
stacked languages and the automata that recognize them. We
call this the ‘‘extended’’ Chomsky hierarchy.!

A very natural problem that arises in computation theory
is the determination of the class in which a given language
belongs. For this purpose, the theory provides a powerful set
of results which are called intercalation theorems or some-
times pumping lemmas. These are necessary conditions for a
language to belong to a particular class. The usual applica-
tion of a pumping lemma is to exclude a given language
from a certain class. Most commonly, the form of a pumping
lemma is as follows: Given any word belonging to a lan-
guage~in a certain class!, it is possible to find a subword~s!
of this word, of length not greater thank ~an integer that
depends only on the language and not the word! such that all
the words obtained by ‘‘pumping’’~i.e., adding another copy
of the subword at its position in the given word! the subword
finitely often would all belong to the language. For example,
the pumping lemma for the class of regular languages which
lie at the bottom of the Chomsky hierarchy is as follows.

Pumping lemma for regular languages. Given a regular
languageL, there exists an integern ~depending only on
L) such that for any wordx5uvw in L with ixi>n,
iuvi<n, v nonempty, all the wordsxi5uv iw also belong to
L.

It might be useful to note that in the case when the word

FIG. 2. The ‘‘extended’’ Chomsky hierarchy. The single-headed arrows denote strict inclusion. The double-headed arrows denote an
eqivalence. The central column consists of the hierarchy of automata, the left column of the hierarchy of generative grammars, and the right
column of the hierarchy of formal languages. In the conventional Chomsky hierarchy, the stack and the indexed languages do not occur.
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represents a periodic orbit, the new words obtained by pump-
ing a subword would correspond to generating new periodic
orbits which would generically be unstable. In the next sec-
tion we use the pumping lemmas for the one-way, nondeter-
ministic stacked languages and the indexed languages.

IV. THE RESULTS AND PROOFS

In this section we present the main results of this paper
and their proofs. We first define formal languages corre-
sponding to the onset of chaos in the unimodal and bimodal
cases and then obtain the classes in the Chomsky hierarchy
where these languages occur. The key ingredient in each
proof is a relevant pumping lemma. As the statements of
these lemmas are rather involved, we will use the lemma and
refer the reader to the literature for its precise statement.

A. The unimodal case

In the notation of Sec. II A, we introduce a sequence of
languagesAn5$Kr :0<r<n%. The words in these lan-
guages are formed from the alphabet
L85$L,C,R%ø$(,)`%. Moreover for eachn, An is finite
and is contained inAn11 . Thus eachAn is a regular lan-
guage. The limit languageA` can be thought of as a sym-
bolic description of the onset of chaos corresponding to the
sequence of period doublings of unimodal maps. Our con-
cern here is to describe the place that this language has in the
‘‘extended’’ Chomsky hierarchy. This is summarized by the
following theorem.

Theorem 4.1

~i! A` is not a one-way, nondeterministic stack language.
~ii ! A` is an indexed language~it, in fact, belongs to the

more restricted class D0L!.
Proof.
~i! We use the pumping lemma for one-way, nondeter-

ministic stack languages, which can be found in@11#. Sup-
poseA` is a one-way, nondeterministic stacked language.
Consider the integerk in theorem 1~henceforth referred to as
OG1! of @11#. Let j0 be a word inA` of length greater than
k. The pumping lemma then guarantees the existence of a
string of words j i ,i51,2,3 . . . obtained by intercalating
strings within j0 as described in OG1. Ifiji denotes the
length of the wordj, we have from OG1, for alli.0,

ij i i2ij i21i5ir i i1is i i1it i i2is i21i5a1 ib, ~3!

where a is the sum of the lengths of all thea j ’s, g j ’s,
d j ’s, x j ’s, c j ’s, andb is the sum of allb j ’s that appear in the
definitions ofr i ,s i , andt i in OG1.

~3! is easily solved recursively, to give

P~ i ![ij i i5ij0i1ai1bi~ i21!/2. ~4!

Now observe that for a wordl in A` , ili52m12 for
somem>0. Since eachj i is inA` we have

P~ i !52m12 ~5!

for every i>0, for somemPN. That this is impossible is
most easily seen as follows.

P8(x)[P(x)22 is a polynomial taking integer values on
the set of integers. Hence the set$P8(n):nPN% has an infi-
nite number of prime divisors~this is rather easy to prove!.
But from ~5! P8( i ) is contained in$2n:nPN%. This leads to
a contradiction and completes the proof.

~ii ! The simplest proof of the fact thatA` in an indexed
language is probably obtained by observing thatA` is a
D0L language~see @10#, p. 390ff, for the definition! and
hence is also an indexed language. We will, however, explic-
itly define the indexed grammar which generatesA` .

Consider the indexed grammar defined as follows: The
nonterminal symbols are$S,T,X,U,Ū%, with S as the start
symbol. The terminal symbols are$L,R,C,(,)`%. The index
productions are~here« is the empty string!

Xf→XŪX,

Uf→Ū,

Ū f→U,

Xg→«,

Ug→L,

Ūg→R.

The productions are

S→~C!`,

S→~TgC!`,

T→T f ,

T→XŪX.

The derivation of the words inA` using the indexed
grammar proceeds as follows. As is conventional,A⇒B
means thatB is derived fromA using a single production~or

index production!, while A⇒B
*

means that there exist
C1 ,C2 , . . . ,Cn such thatA⇒C1⇒C2⇒•••⇒Cn⇒B. Here
A,B,Ci are words formed from the terminal and nonterminal
symbols
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S ⇒ ~C!`

S ⇒ ~Tg!` ⇒ ~XgŪgXgC!` ⇒
*

~RC!`

⇓
~T fgC!` ⇒ ~XfgŪf gX fgC!`

⇓
A ⇓*
⇓

A ~XgŪgXgUgXgŪgXgC!`⇒
*

~RLRC!`

⇓
A

A

B. The bimodal case

We define the language which would describe the first
accumulation of period doubling for the bimodal maps. In
the terminology of Sec. II B, we describe each wedge
v(P,Q) by the word^P:Q&. The regionRn is obtained as a
union of wedges, each of which corresponds to a unique
finite strings of l ’s and r ’s of lengthn.

To describe the word corresponding toRn we first intro-
duce the lexicographical ordering on stringss, induced by
the orderingl,r on the symbols ofs, i.e., if s15xa . . . and
s25xb . . . are two strings on$ l ,r %, with a common prefix
sequencex and a,bP$ l ,r %,aÞb, then s1,s2 if a,b, or
else s1.s2 . Note that this ordering is different from the
ordering on words we had defined in Sec. II A.

Remark (1). The wordss can be generated as the nodes of
a binary tree. The lexicographical ordering is then the con-
ventional ordering of nodes from left to right of a binary tree
~see Fig. 3!. We will refer to this tree asT s .

With this we now define the word corresponding toRn as
follows:

~a! Arrange the wedges occurring in the definition of
Rn , in increasing lexicographical order of the stringss that
each wedge corresponds to.

~b! Concatenate the words corresponding to each wedge
in the same order to form the word corresponding toRn .

In exactly the same fashion we can obtain the words
which describeSn . Let w(Rn) and w(Sn) be the words
which describeRn andSn , respectively.

Remark (2). The length of the word representing a wedge
in the definition ofRn is of length 2n1217. This follows
from the fact that ifs has lengthn, then the lengths ofXs
andYs add up to 2n1122. Similarly the length of a word
that describes a wedge inSn is 332n17. In particular, note
that the number of symbols that occurs between two con-
secutive occurrences of the symbol ‘‘^ ’’ in the definitions of
Rn andSn is a ~nonconstant! function ofn.

We define a sequence of languagesB i ,i51,2 . . . on the
alphabet

S85S ø $^, &, :, ;, ~ , !`%

as follows:

B i5$w~Rj !: j51,2 . . .i %.

This language can be thought of as describing the region
ø j51

i R̄ i .
As an example, we construct the languageB1 .

XB5B, YB5B, UB5R, Ū B5B, VB5R, V̄ B5L,

Xl5B, Yl5LR, Ul5R, Ū l5B, Vl5L, V̄ l5R,

Xr5BR, Yr5B, Ur5B, Ū r5R, Vr5R, V̄ r5L,

w~R1!5^~RLRC!`:~LRLK!`&^~BRBC!`:~RBRK!`&,

B15$^~RLRC!`:~LRLK!`&^~BRBC!`:~RBRK!`&%.

The limit languageB` can be thought of as describing
the ‘‘boundary’’D of order and chaos. The following theo-
rem characterizesB` with respect to the Chomsky hierar-
chy.

Theorem 4.2

~i! B` is not an indexed language.
~ii ! B` is a context-sensitive language@it, in fact, belongs

to the more restricted class DSPACE(n)#.
Proof.
~i! The pumping lemma for indexed languages is given in

@12#. Our proof closely follows theorem 5.3~henceforth re-
ferred to as HA5.3! of @12#. We urge the reader to refer to
@12# for a description of the notation that we use in this
proof.

SupposeB` is an indexed language. Choose ‘‘^ ’’ as a
special symbol ofS8. With every word of an indexed lan-
guage, we can associate a derivation tree~see@12#!. A node,
p, of a derivation tree,g, is said to be aP node, if there exist
at least two distinct subtrees under it, each of which contains
at least one node with the label ‘‘^.’’A pair of nodesp1 ,p2 of
g are said to be CF-like if~a! p2 is a descendent ofp1 , ~b!
p1 and p2 have the same labels,~c! there exists aP node
p, such thatp is a descendent ofp1 andp2 is a descendent of
p. If g contains no CF like pair of nodes, it is said to be
non-CF-like.

FIG. 3. The treeT s .
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We now show that ifc is a word inB` of large enough
length, then parts of it can be intercalated in such a way that
the resulting words would not belong toB` . Choosec to be
any word in which the number of occurrences of the symbol
‘‘ ^ ’’ is more thank8, wherek8 is an integer which depends
only onB` ~and is defined in HA5.3!. Sayg is the deriva-
tion tree ofc. We consider two cases.

Case(a!. g is non-CF-like. In this case, following the
proof of HA5.3 we can establish that there is a decomposi-
tion g5a•b•d•t•n such that eithera or n has at least three
P nodes. Then by intercalating parts ofg we obtain a se-
quence of treesun , n51,2,3 . . . each of which hasa and
n as its ~first and last, respectively! components. Moreover
the wordg(un), of which un is a derivation tree, belongs to
B` and ig(un)i,ig(un11)i . This means that there exist
words of increasing length inB` such that each of them
contains afixed subword of the form̂ •••^ ~because either
a or n has at least threeP nodes!. This contradictsRemark
(2).

Case(b). g has a CF-like pair of nodes. In this case the
proof of lemma 2.1 of@12# guarantees a decomposition
g5a•b•d such thatb contains aP node. Moreover for
eachn51,2,3 . . . , there exists a sequence of trees

such that eachg(gn)PB` and ig(gn)i,ig(gn11)i . This
implies that for everyn>1, g(gn) contains a subword of the
form (•••^•••)n ~note that by•••^••• we mean afixedsub-
word of that form!. Since thegn’s belong toB` we have a
contradiction withremark (2).

~ii ! We prove thatB` is a context-sensitive language by
showing that it in fact belongs to the complexity class
DSPACE(n). The proof that the class of context-sensitive
languages is equivalent to the complexity class NSPACE
(n) @which contains DSPACE(n)#, can be found in@10#.

To show that a language is DSPACE(n), we need to show
that the words in the language can be recognized by an off-
line, multitape Turing machine such that the size of every
tape ~including the read-only tape! is limited to the size of
the input word~buffered on either side by end-marker sym-
bols!. We will informally describe the steps in the algorithm
required to recognize the input string. It will be clear from
our description that each subroutine in this algorithm can be
implemented on a bounded tape~or sometimes a pair of
tapes! of our machine. The number of subroutines involved
in the description will thus determine the number of tapes of
the machine. We buffer each tape of the machine with end-
marker symbols. If for a given input string the head on any
output tape reaches an end marker, the machine halts in a
nonfinal state and thus fails to accept the string. It will be
clear that for a string inB` this will never happen.

In what follows we denote the tapes of the Turing ma-
chine byt i ,i50, . . . ,N. t0 is the input tape which is read-
only. Auxiliary tapes necessary to perform computations at
step (1)will be denoted astai ,tbi , etc.

Step (1). Determinen for the given input wordc.
We wish to placen 1’s on t1 to determine the depth of the

binary tree@see remark (1)# wherec could occur. This is

easily possible usingremark (2). Since the first wedge~in
what follows we will use the terms ‘‘wedge’’ and ‘‘the word
representing the wedge’’ interchangeably when there is no
danger of confusion! in any word of B` has length
2n1217 for some n, we can use two auxiliary tapes
ta1 ,tb1 to evaluaten.

Step (2). Determine the possible stringss on $ l ,r % of
lengthn, in lexicographical order.

We now want to obtain the nodes of the treeT s @see
remark (1)# at depthn. These nodes will be written ont2 in
the lexicographical order from left to right and will be sepa-
rated by commas. To achieve this we need two auxiliary
tapesta2 ,tb2 . For every 1 encountered ont1 , the tapesta2
andtb2 can be used alternately to generate the nodes ofT s at
successive depths by copying and prefixing. This is contin-
ued until the first blank is encountered ont1 , when the pro-
cess stops and the contents of the last auxiliary tape written
on are copied tot2 . As the formal description of the entire
procedure is cumbersome, we leave it to the reader to check
it. It is easy to see that the limited size of the tapes available,
in fact, suffices for this purpose.

Steps (3)–(8). DetermineXs ,Ys ,Us ,Ūs ,Vs ,V̄s for an s
on t2 .

For an s that has been written on tapet2 , we wish to
determine the correspondingX,Y,U,Ū,V,V̄. These will be
stored on tapest3 to t8 , respectively. As the process is re-
cursive we can use auxiliary tapestai ,tbi i53, . . . ,8 for
each main storage tape. While the determination ofX,Y re-
quires mere copying from one tape to another, the determi-
nation ofU,Ū,V,V̄ will require the determination of the par-
ity of the number ofR’s in X,Y.

Step (9). Determine the word corresponding toRn in
B` .

For eachs the wedges that occur in the definition ofRn

are easily obtained by copying theX,Y,U,Ū,V,V̄ in the rel-
evant order tot9 . Control then returns tosteps (3)–(8)where
X,Y,U,Ū,V,V̄ corresponding to the nexts are obtained, and
so forth.

After this the word int9 is compared symbol-by-symbol
with that in t0 . If it is the same the machine halts in a final
state or else it halts in a nonfinal state.

We observe that ifcPB` , then each step in the process
described above could be carried out on the bounded set of
tapes that was available. Thus if during any of these steps a
head reaches the end of a particular storage tape, we are
guaranteed thatcP” B` and the machine would halt in a
nonfinal state, rejecting the word. This completes the proof.

V. APPROACHING THE ONSET OF CHAOS

Let us first consider the description of the onset of chaos
in the unimodal case. It might seem at first sight that the
description of this set by means of the languageA` as being
ratherad hoc. In fact, instead of choosing to approach the
accumulation point through a sequence of superstable bifur-
cations, we might as well have chosen any of the other se-
quences available. However, it is easy to see that the knead-
ing sequences within a periodic window are very simply
related to each other. We could in fact have included every
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kneading sequence less thanX` to form a new language
C ` . This new language would be described simply as

C `5A`
,øA`øA`

. ,

where A`
, (A`

.) denotes the language containing the
kneading sequences to the left~resp. right! of the superstable
sequences in each periodic window. A proof almost identical
to the one given forA` , however, shows that bothA`

, and
A`

. ~and henceC `) are indexed languages.
A more pertinent question is what happens if we are to

approach the onset of chaos from the chaotic side. This ques-
tion is rather tricky. For the sake of discussion let us fix the
family of maps to be the logistic family, described by the
equation f (x)5mx(12x). It will be clear that everything
would go through for a much larger class of maps as well.
We could approach the accumulation pointm` from the right
through a sequence of band-merging points. We begin with
the region of well-developed chaos atm54. The kneading
sequence at this point isK195R(L)`. The band-merging
points are then obtained through successive applications of
the * operator, mentioned in Sec. II A, as follows:

K295R*K19 ,

K395R*R*K19 ,

A

Kn95~R* !nK19 ,

A

Now consider the languageA9̀ 5$Kn9 :n51,2, . . .%. We
could think of this language as another description of the
edge of chaos, this time from the region greater thanm` . In
fact the definition of the* operator immediately confirms
that this is a D0L language and hence is also an indexed
language~see@10#!. Note that we could have discussed the
languagesA` andA9̀ using the* operation as well~see,
for example@5#,!.

We could now ask the same question that we asked be-
fore. What about other descriptions of the onset of chaos
from the chaotic part of the spectrum? We do not at present
have any good answer to this question. As a preliminary
observation we might note that we could have chosen to
approach the onset of chaos through the kneading sequences
Kn8 described in Sec. II A and could have described yet an-
other languageA8̀ 5$Kn8 :n51,2,3 . . .%. Of course this lan-
guage is also an indexed language.

However, there is in fact a crucial difference between the
languageA` and the languagesA8̀ orA9̀ , which, though
obvious, might be well worth pointing out: each word in
A` describes a stable periodic point, whereas that inC `

describes an unstable periodic point. In the chaotic regime
the attracting sets would be described by aperiodic symbol
sequences which are infinitely long. Unfortunately, classical
computation theory does not consider within its domain lan-
guages whose words might be infinitely long. In fact the
behavior of classical computational devices on words of in-
finite length is very different from their behavior on words of

finite length~see@13#!. Thus, we would have to have to find
appropriate representations for such sequences so as to be
able to deal with this problem within the context of classical
computation theory. Alternatively, we speculate that a de-
scription of computation over the field of reals, when suffi-
ciently elaborate so as to provide an analog of the Chomsky
hierarchy, might throw light upon these issues. The recent
developments in this direction due to Blum, Shub, and Smale
@14# might provide the seeds of such a theory.

The drawbacks mentioned above also apply to our discus-
sion of the bimodal maps. We could, as in the unimodal case,
choose to approach the edge from the chaotic side. In the
notation of Secs. II B and IV B, the language
B 8̀ 5$w(Sn):n51,2,3 . . .% can be considered as describing
the regionD, thought of as the boundary of the regionS` .
The proof given in Sec. IV B goes through almost unaltered
even for this case. ThusB 8̀ is a context-sensitive language.

VI. ON COMPLEX DESCRIPTIONS

In conclusion we would like to place our results in per-
spective. What paradigm do these results suggest for a defi-
nition of complexity? In order to address this question we
must first inquire into the process of description. The scien-
tific description of phenomena normally involves two as-
pects. The first is the specification of themodel class. The
second aspect involves the description of the phenomenon at
hand, with respect to this model class. Let us call this pro-
cess, interpretation. For a description to be ‘‘useful’’ we
must ensure that both the model class and the interpretation
have been specified in finite terms. Given this rather simplis-
tic picture of the modeling process, we now ask how com-
plexity arises or, more specifically, why are some phenom-
ena more complex than others? Consider a phenomenon
which resists finite interpretation with respect to a certain
model class. In order to describe it, we would then have to
construct a ‘‘larger’’ model class. This could be regarded as
signalling complexity.

To illustrate this in the context of our results, consider the
classes of automata, or equivalently, the classes of grammars
in the Chomsky hierarchy as representing model classes. Let
the behavior of maps~unimodal or bimodal! represent the
entire class of phenomena to be described. The symbolic
dynamics, giving rise to a language, and the explicit con-
struction of a grammar~corresponding to a given model
class! generating that language, at each value in the param-
eter space, can serve as an interpretation for the phenom-
enon. Together these constitute a description of the behavior
of the map in question. Now, at the onset of chaos we ob-
serve that we are forced to change our model class~in the
unimodal case, for example, from the regular grammars to
the indexed grammars!. In fact, in our case we have proved
that no finite interpretation can be obtained of the onset of
chaos in terms of the older model class. This describes the
complexity at the onset of chaos.

The idea that complexity and emergence must necessarily
be defined with respect to models has been considered before
~see@15,16# and references therein!. Finally we would like to
point out that, unlike conventional statistical mechanics,
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which relies on numerical or quantitative classes~say using
critical exponents!, the paradigm suggested above favors a
more ‘‘descriptive’’ definition of complexity. What one is
tempted to observe is that complexity is not so much a matter
of number as it is of mechanism.

Note added. After most of this work was completed, we
discovered that Crutchfield and Young@17,18# have also
shown that the formal language corresponding to the unimo-
dal case is an indexed language. Their approach, based on
the «-machine reconstruction, is more general but different
from the one~based on symbolic dynamics! pursued in this
paper.
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